

ACGcaps™ HA

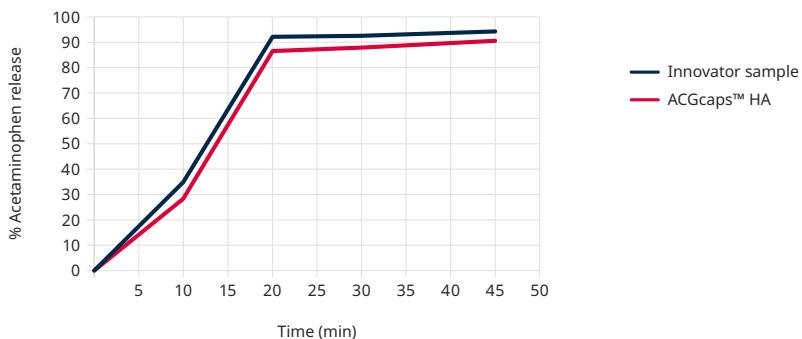
C CELLULOSE

Provides a differentiated dissolution profile for IR capsules.

ACGcaps™ HA is a chemically inert high-performance HPMC capsule that addresses specific dissolution requirements by leveraging a differentiated solubility profile for IR (immediate-release) capsules. ACGcaps™ HA contains an optimum amount of gelling agent that meets the dissolution requirements of capsules in 0.01N HCl (pH 2.0).

Key features

- / Not susceptible to cross-linking
- / Suitable for hygroscopic and moisture-sensitive ingredients
- / Proven machine-friendly design
- / Consistent quality and dissolution performance


Technical specifications

- / Moisture content: 3.0% to 8.0%
- / Disintegration time in water at $37 \pm 2^\circ\text{C}$: maximum 15 minutes (with guided disc)

Dissolution profile of ACGcaps™ HA in different pH media.

A comparative dissolution study of Pradaxa® (dabigatran etexilate) oral pellets in capsules and Dabigatran etexilate oral pellets in ACGcaps™ HA was performed in pH 2.0 (0.01 N HCl). The result illustrated below shows a similar dissolution profile for both the products.

Product	Capsules containing Dabigatran etexilate mesylate oral pellets
Medium	0.01 N HCl; pH 2
Apparatus	Modified basket
Capsule size	#0 Blue / White
RPM	100
Analysis	UV method

These certifications are applicable to certain colours and / or variants.